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LASER WAKEFIELD ACCELERATION AND
RELATIVISTIC OPTICAL GUIDING

Introduction

It has been suggested that the next generation of high energy linear

electron accelerators utilize the extremely high gradients associated with

plasma waves. Excitation of plasma waves having gradients as high as

several tens of rPV/m (an be accomplished in a numbcr 3f clated rays. Th

plasma based acceleration schemes which have received the most attention

are the plasma beat wave acceleratorI (PBWA) and the plasma wakefield

accelerator 2 (PWFA).

The purpose of this report is to propose a laser plasma electron

acceleration scheme 3 which utilizes a relativistic optical guiding

mechanism. Relativistic optical guiding 4 ,5 may allow a sufficiently high

power laser pulse to propagate long distances within a plasma. The

principle of this optically guided laser wakefield accelerator (LWFA) is
15

that a short (TL - 2n/wp - 1 picosec), high power (P > 10 W), single

frequency laser pulse could propagate long distances in a plasma and

produce accelerating wakefields in a manner analogous to that in the PWFA

(see Fig. 1). In the LWFA, however, the plasma responds to the

ponderomotive forces of the laser pulse as opposed to the self-fields of

the electron beam as in the PWFA. In addition, in the LWFA the plasma wave

is not resonantly excited as it is in the PBWA. Therefore, the plasma

density in the LWFA concept does not have to be finely adjusted to achieve

large amplitude accelerating fields. The idea of generating a plasma wave

using a single frequency, short pulse laser was suggested by Tajima and
1

Dawson, but apparently was not pursued. Moic detailed consideration of

the laser propagation issues, along with recent advances in laser

technology, indicate that the single frequency, short pulse LWFA togethei

with relativistic optical guiding may have advaiLages over the PBWA and

PWFA schemes.

Manuscript approved July 6. 1988,



In the PBWA the plasma wave is excited by the beating of two

relatively low power, long pulse laser beams having a frequency difference

equal to the plasma frequency. The beat (ponderomotive) wave resonantly

drives the plasma wave Lo large amplitudes. In the PWFA concept, a low

energy, high current relativistic electron beam (driver) having an

appropriate current profile travels through a plasma leaving behind a large

amplitude plasma wave (wakefield). The wakefield accelerates a second low

current, high energy relativistic electron beam. A necessary criteria for

successful operation of either ihe PBWA or the PWFA is that the driver,

i.e., radiation or electron beam, must be capable of propagating a

sufficiently long distance within the plasma.

Both the PBWA and the PWFA concepts have a number of unresolved

issues. In the PBWA, these include fine tuning of the laser frequencies

and plasma density to within a fraction of a percent to allow for resonant

growth of the plasma wavc. 6 Also the laser beams must propagate large

distances within the plasma, avoiding i) diffraction, ii) laser-plasma

instabilities, iii) phase detuning between the plasma waves and the

accelerated electrons, as well as iv) energy depletion of the driving laser
7

beams. The problems regarding the PWFA involve the technology of

producing a high current driving beam with a slow rise time and a very
8

rapid fall time, of the order of picoseconds, as well as the stable

propagation of such a beam over large distances within the plasma.

Multiple acceleration stages, all sequentially phase synchronized, have

been proposed to overcome the propagation distancc limitation in both the

PBWA and PWFA. Multi-staging appears to be extremely difficult from a

practical point of view.

2



Optical Guiding

The need for optical guiding in the LWFA becomes apparent when the

various limitations placed on the acceleration distance are considered.

One limitation on the acceleration distance is the diffraction length,

Ld, which characterizes the distance over which the laser beam spreads

transversely. In the absence o' some form uf optical guiding, tilc

diffraction length is given by the vacuum Rayleigh length, Ld = r2 /X,
d L

w.here r L is the laser spot size and X is the wavelength. Another
1,7

limitation or the acceleration length is the phase detuning distance,

L 2y2Xp = 2(1+X /4r) , where - (1-v /c ), v is the group
t L L p pg g

velocity of the laser pulse and X is the plasma wavelength. The phase
p

detuning length is the distance over which an ultra relativistic electron

outruns the wakefield of the radiation pulse and no longer gains energy.

In addition to Ld and Lt there is also the laser depletion length,
9

Lp = E2 _L/E 2 (C / \)2 /a 2o , where E is the laser electric field, CL is
p L-L z L / Lo' LL

the laser pulse length, Ez is the axial wake electric field and a Lo is the

normalized vector potential amplitude of the radiation field,

a Lo = eIALo/(moc 2). When the pulse travels a distance 1p, the energy in

the trailing plasma wakefield becomes comparable to the laser pulse energy.

Typical values for Ld, Lt and Lp are - 1 m, - 100 m and - 1000 m

respectively. In obtaining these estimates the following parameters were

used: A 1 jim, aLo - 0.5 and CL - r L, - - 0.5 mm. The primary

limitation on the acceleration distance is due to diffraction. Ld .

Clearly, some form of optical guiding within the plasma is necessary to

avoid the need for multi-stage acceleration.

The optical guiding mechanism which may he appropriate for the

intense, short laser pulse in the LWFA is that of relativistic guidingi.

Physically, relativistic guiding results from the quiver motion of the

3



plasma electrons in the radiation field, v = caL/Yi , where yi(r)

2 112|
(l+aL(r)) . This gives an index of refraction n(r)

(-(Wpo2 )/Y I (r)) /2, where w po is the ambient electron plasma frequency

and w is the laser frequency. If the radiation beam is peaked on axis,

then an/ar < 0, which is a necessary requirement for refractive guiding to

occur. Relativistic optical guiding occurs on a fast time scale of order
-1 -1 -I

W ; hence, it can affect short pulse radiation, w << CL/C < cp
L p

Using the ray equations from geometric optics, it is possible to

derive an envelope equation5 for the evolution of the normalized spot size

x = rL/(aLorLo) of the radiation beam, where r Lo is the initial spot size.

The envelope equation is of the form of a particle moving in an effective

potential, d2x/dt2 - -V 0V/ax. The effective potential V(x) is given

by av/ax = - x + 16ax[g(x) - 2 ln(g(x)/2+l)1, where
(2c/ 2 2 2 2a212d

V0 = (2c 2/(&)rLoaLo)) 2 a = (wpoaLorLo/(4 c)) 2, and g(x) = (l+x-2 ) 2 1.
5

Analysis indicates that the effective potential contains a minimum

provided a > 1, thus allowing for matched beam (constant spot size)

solutions. Physically, a can be written, in terms of the laser power P, as

SP/Pcr' where Pcr 1 17(w/up) 2 GW is the critical power threshold for

relativistic optical guiding. The high power levels needed for

relativistic optical guiding in plasmas are consistent with the intense

laser pulses needed in the LWFA.

Two points should be mentioned with regard to the propagation of

1finite length pulses of duration (L/C < W. The first is that
p

relativistic optical guiding may also lead to "pulse clipping". That is,

the front and back regions of the pulse where P < P will not be guided('I

but instead will diffract away, leaving a l:v ... p, SE. Only the

central region of the pulse, where P > P1 , will propagate. The second

point concerns longitudinal dispersive spreading. It can be shown that

4



after propagating a detuning length Lt, the intrinsic frequency spread of

the beam Aw causes the pulse to spread by the amount A L = 2(/)XP,

Since jcw/ << 1, longitudinal dispersive spreading should not be a

problem.

Acceleration Mechanism

In the relativistically guided LWFA concept the short pulse, high

power laser beam rovides both a radial and axial ponderomotive force on

the plasma electrons. The radial ponderomotive force expels electrons

radially outward while the front (back) of the laser pulse exerts a forward

(backward) force on the electrons. In this sense, the laser pulse acts

approximately like a negatively charged macro particle propagating through

the plasma (see Fig. 1). As the plasma electrons flow around the laser

pulse, large amplitude plasma waves are generated.

The ponderomotive force, exerted by the laser pulse on the plasma,

moves at the pulse's group velocity and is given by F pond = elvL(r,7't),

wieie the ponderomotive potential is L = -mc 2a2/(21ej). Note that the

axial ponderomotive force from the laser pulse cannot be used directly to

accelerate electrons to high energies. The ponderomotive force on the

accelerated electrons is smaller than that on the plasma electrons by the

factor 1/y, where y is the relativistic factor associated with the

accelerated electrons. The laser pulse must first excite a plasma wave

which, in turn, can be used for acceleration. fn this analysis the laser

beam is assumed to be circularly polarized, although a linearly polarized

laser, apart from generating harmonics, would have been equally

satisfactory.

5



The wave equation for the plasma response or wakefield is

2 1 a 2 4n a&j n
V E c 2 at 2 c at - (1)eV~ca t c

where SJ and Sn are the plasma response electron current and number~p p

density respectively. It proves convenient to perform an algebraic

transformation to the speed of light frame ( = z-ct, T = t). The

transformation should actually be to the laser pulse group velocity frame,

but the differences can be neglected for the present purposes.

Furthermore, a temporal steady state, a/aT = 0, in the laser pulse frame

is assumed. It can be shown that for short laser pulses with aLo 2  « <

the plasma quantities remain linear and nonrelativistic. The plasma,

therefore, is assumed to be described by the linear, nonrelativistic, cold

fluid equations. Using this fluid response, 8Jp and 8n p, in the wave

equation, the plasma response field- and density are given by

Li2 + k 21(r,) k 2L(rQ, (2)

+ k} 8np(r) = - c2 (3)
m c

where k = w /c and V = e r/ + e @/@2. Note that even in the two-
p po r r z

dimensional case the response field, E, is derivable from a scalar

potential and hence, there is no response magnetic field.

From (2), the axial wakefield is given by

E ok)d(' (4)

From (2) and (3) it ca'n be shown that the transverse wakefield and plasma

density are given by aE r ia F E /@r and 38n p /3 (4nrle) 1V2E
r z p z

6



As an illustration, consider a laser pulse profile of the form

a (rQ) = a sin(rC/L)exp(r 2r I2r) for 0 < e < and 0 otherwise. Then
aLr, ) =Lo i( /L ep-r/L) L

the axial wakefield and response plasma density within the laser pulse,

0 < < and behind the pulse, 0 < 0, are given by

2ny2 k Lo (r)(\

E 2n,) 2 2 2 Lo r) in k CL(l- ) +h sin k(L/h~ (5)
Z 4n2_k22- I pL(k

p L

and

Sn p(z) 2 (ej n2 1Lo°(r)]

in2  2 2  2  cos kp L (1- ) - cos(kp L /h)no - l 02 (4n2_k p(2L

k+rL  ._ r2 .cos kpC (l-Q - - h 2C k \(
p L L

wlc- ll k nX r -(m c 2/21e1)a 2exp(-2r 2 /r2 )nd
Lhcre '= k I /p = -(m° Lo L

where h = k C L/2n for 0 < < I and h I ftor < 0. The transverse

wakefield is easily caiculated from (5) by the relation 3E /R= 2E /ar.

It can be shown, as is true of PWFA, that there exists a region of length

X /4 in the laser pulse frame over which the accelerated electrons
p

experience both an accelerating axial field as well as a focusing radial

field.

The axial wakefield in (5) is maximum when the laser pulse length is

nearly equal to the plasma wavelength, [ X P. o X , the max:!Txu;:

accelerating field is approximately n times larger than the maximum
ponderomotive axial field Ez,ma x - TFpondmax "- t 4Lo /L. It can !'C czhoP..u-

that the maximum accelerating field is fairly insensitive to changes in th.

laser pulse length and/or tihe ambient plasma density. It should he notei

that (5) and (6) also iidicate that it is possible to operate the IWFA in

7



"wakeless" regime (i.e., the plasma response is nonzero only within the

region of the laser pulse) when C L mX p, where m is an integer > 2.

Numerical Results

The results for the plasma response given by (5) and (6) arp plotted

in Fig. 2 for the parameters = X = 0.03 cm, aLo = 0.31 and

rL = 0.038 cm. The values of aLo and r L are those required5 for a
S

relativistic optical guided beam when a=- P/P = 1.2. The axial wakefield
cr

is shown by the solid curve and the density wake is shown by the dashed

curve. The maximum accelerating gradient for this example is 2.6 GeV/m.

Recall that the laser pulse extends over the region 0 < . < I.

In order to further examine the principles of the LWFA, a full scale

simulation was performed using the electromagnetic particle code1 0 FRIEZR.

FRIEZR is a 2 1/2D, fully relativistic, electromagnetic PIC code for

electrons with a fluid ion background. The simulation is carried out in

the transformed laboratory frame of ( z-ct. The laser field was modeled

by a fixed external porideromotive force moving at the speed of light. The

res lting axial wakefield is shown in Fig. I for the same parameters as

used in Fig. 2. The results shown in Fig. 3 are in good agreement with

analytic theory.

Discussion

The above analys is indicate. that the LJFA is tcapnble of generating

acreleration gladients on the order of a few (;CV,'%m by piopaati:,g a .si rigi,,

rdhort put e, high pn,.!ei laser beam throtgli a plasrma. Equr ation (5) give a

maximum acceleiation giadient of Ema:.: = .m (Crral ,'(2 0 , j ) . In add it joi,

relativistic optical guiding occurs lot suf ficinr ly high radiat ion powe.r;,

P > P . If the radiation pulse is , opt ically girided, the arr IPeleration

8'S



distance will be limited to the phase detuning length, Lt, instead of the

much shorter free space Rayleigh length, Ld. This indicates a maximum

single stage energy gain of e= LtEmax = 2cX
4p/(XrL)2 where = P/P

Table 1 summarizes these results for a C02 , an Nd glass and a KrF laser,

each of 1 psec pulse duration. In each case a = 1.2 which implies

2a Lo 0.31 and rL = 0.038 cm for a matched beam propagation in the

relativistic optically guided 5 propagation mode.

The present analysis of relativistic optical guiding neglects the

effects of the electron density response on the laser pulse. Such an

approximation is appropriate when 8n /n << a 2/2. For the present
p po Lo

analysis, however, this condition is only marginally satisfied for

parameters of interest. In addition, laser-plasma instabilities c2 h

as the filamentation, self-modulation or Raman scatteting processes have

not been considered for relativistically guided short pulses. It is

anticipated that by keeping the dimensions of the laser pulse small,

L  ~ r L < Xp, the effects of these instabilities may be minimized. Foi

12 •example, Raman scattering processes occur through the development of

plasma waves within the laser pulse. Since the length scale for the

development of plasma waves is X p, such effects may he suppressed if

11L K N . In addition, relativistic filamentation is a result of unstable SL~ p

transverse modes with k 1 > Xp. Again, this instability may be suppresscd

in laser pulses with r L X . Fur-hermoie, random fluctuations in theP

plasma density will result in spreading of the laqer spot size. A more

self -consistent model of relativistic optical guidinig to- fitite pulse

lengths i. currently heing puisued by the aithl .

The IWFA may havc advantages ove both the PWFA and the PBWA. Fol

example, in the PWFA, it is necessary to use a hi ghi ciii ien t (tens of kA)

driving electron beam with a long t ise, time (>> w ) and a rapid fall time

9



(<< W1).8 Stable propagation within a plasma of a high current electron
p

-l
beam which has a pulse length greater than w may be difficult.p

Similarly, in the PBWA, resonant amplification of the plasma wave requires

that the laser beams have long pulse lengths (many plasma periods in

extent). It is likely that propagation of these long pulse beams will be

plagued by the usual laser-plasma instabilities. In addition, such

resonant amplification requires fine tuning between the frequency
6

differences of the two lasers and the plasma frequency. This fine tuning,

which is not necessary in the LWFA, may be difficult to achieve in

practice. Although the maximum gradients attainable in the LWFA may be

lower than in the PBWA, the many apparent advantages (i.e., relativistic

optical guiding, stability and simplicity) of using a single, intense,

short pulse laser beam, makes the LWFA an attractive acceleration scheme.

Acknowledgments

The authors would like to acknowledge useful discussions with C. M.

Tang and J. Krall. This work was supported by U. S. Department of Energy.

10

U|



References

1. T. Tajima and J. M. Dawson, Phys. Rev. Lett. 43, 267 (1979).

2. P. Chen, J. M. Dawson, R. W. Huff and T. Katsouleas, Phys. Rev. Lett.

54, 693 (1985).

3. P. Sprangle, E. Esarey, A. Ting and G. Joyce, presented at the

Nonneutral Plasma Physics Symposium, National Academy of Sciences,

Washington, DC, March 28-29, 1988; also presented at the Spring

Meeting of the American Physical Society, Baltimore, MD, April 18-21,

1988.

4. C. Max, J. Arons and A. B. Langdon, Phys. Rev. Lett. 33, 209 (1974);

G. Schmidt and W. Horton, Comments Plasma Phys. 9, 85 (1985); G. Z.

Sun, E. Ott, Y. C. Lee and P. Guzdar, Phys. Fluids 30, 526 (1987).

5. P. Sprangle and C. M. Tang, in Laser Acceleration of Particles, ed. b-

C. Joshi and T. Katsouleas, AIP Conf. Proc. No. 130 (Amer. Inst.

Phys., New York, 1985), p. 156; P. Sprangle, C. M. Tang and E. Esarc,.

IEEE Trans. Plasma Sci. PS-15, 145 (1987).

6. C. M. Tang, P. Sprangle and R. N. Sudan, Appl. Phys. Lett. 45. 375

(1984); Phys. Fluids 28, 1974 (1985).

7. T. Katsouleas, C. Joshi, J. M. Dawson, F. F. Chcn. C. E. Clayton.

B. Mori, C. Darrow and D. Umstadtci, in Lasei Acceleration of

Particles, ed. by C. Joshi and T. IKitsouleas, AP Conf. Proc. No. IY.

(Amer. Inst. Phys., Ncw York. 1985). p. 63.

8. P. Chen and J. M. Dawson, in L.!zei Acceleration. cd. hv (. o i .-.

T. Katsouleas, AlP Conf. Proc. No. I T( (Aiei . Inst. Phys. . c" : .

1995), p. 201.

9. W. Horton alld T . Fa iima, in I ' -9w.c lci at (:l ot 11a t i t 1' cd.

Joshi and T. Katsou lcas, AlP Cont . Li oc. No. 1 I (Amcev. Inst. thvs..

New York, IflR)), p. 179; Phys. Rev. A ID. 411 1 1 (1 8 ).

II0



SnII I I I ll ,n • - . ..

10. G. Joyce, Bull. Amer. Phys. Soc. 32, 1766 (1987).

11. C. Max, J. Arons and A. B. Langdon, Phys. Rev. Lett. 33, 209 (1974).

12. D. W. Forslund, J. M. Kindel and E. L. Lindman, Phys. Fluids 18, 1002

(1975).

12



Table 1 The laser power (P), diffraction length (free space Rayleigh

length, 1d), detuning length (Lt) and si-gle stage energy gain

(L= EzLt) for three lasers: CO2, Nd glass and KrF. The

parameters are chosen to correspond to a relativistic optically
2

guided beam with P/Pcr = 1.2, ao 0.31 and rL: 0.038 cm. This

gives an acceleration gradient of Ez = 2.6 GeV/m for CL p

0.03 cm.

Laser X[imj PIWI Ld[m) LtIm e GeVJ

CO2  10.6 1.9x10 13  0.045 0.54 1.4

Nd-glass 1.06 1.9x1015 0.45 54 140

KrF 0.26 3.OxlO 16  1.8 860 2200
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Fig. 3 The axial wakefield obtained from the particle code FRIEZR for the

same parameters as in Fig. 2. The laser pulse is modeled by a

fixed ponderomotive force which extends over the region

0 < (z-ct)/( <1.
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